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ANALYSIS AND DESIGN OF STRUCTURAL ELEMENTS
WITH OPTIMAL LONGEVITY

V. A, Zaev and A, F. Nikitenko UDC 539.376+539.019

Practically all investigations devoted to the optimal design of structural elements are executed under the
assumption of steady creep and do not take into account the circumstance that the cumulative damage process
accompanied by a continuous redistribution of the stress therein precedes fracture of the material. The solu-
tion of optimization problems with the traditional optimality criterion of the equal strength type resuits in un-
realizable designs in the majority of cases.

In this connection, a variational formulation of the problem of analyzing and designing structural elements
with optimal longevity 1is presented below. If is proposed here to use an optimality criterion that takes ac-
count of the total damage over the volume of the material during creep as the target functional. A method is
developed for solving this problem on the basis of nonlinear programming methods.

Let a body of volume V bounded by a surface S be loaded by surface loads that are constant in time. The
system of equations describing creep of the material and simultaneously taking account of the cumulative dam-
age therein has the form {1]
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where & ;, &, are homogeneous functions in the stress of degree (n + 1) and (g + 1), 5ij= 0ij ~ Okké -/ 35 oy; are

stress tensor components, Sy = s; 15543 /2, pjj are creep strain tensor components, w is the damageabxhty param~
eter, and m, n, g are material charaotemstlcs, and the dot denotes differentiation with respect to the time,
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At the initial instant w(xy, 0) =0 at all points of the body, at the time t, the damageability parameter at
a certain point of the body with coordinates xl’g (k =1, 2, 3) reaches its critical value w(xj;, t,) =1 and ma-
terial fracture occurs (t, is the time of the beginning of body fracture. ‘

We assume the total strain rate éij is the sum of elastic strain éij and creep strain rate tensor com-
ponents
&= e pi, & J=1,2, 3. (3
The e;; components are related to 05 by Hooke's law. For simplicity we consider the material incompressible
and in the elastic domain, i.e., ej;04j = 0.
The equilibrium equations -
00”/01;:0, i’ ]:i, 27 3 (4)

and the Cauchy relationships
Zéij == (?L.tl/&c] ”}“ al-lj/a.l'i, (5)

are valid at any point of the body, as are the boundary conditions on the surface S of the body
ovi = Ty (8)

Here u; are displacement vector components, vy are vector components normal to the body surface S, and Tj
are components of the external load vector.

Since the inequality 0 = w (x|, t) < 1 is valid for any time, then the total damageability of the material in
a volume V at a time t, , can be estimated by the functional

L={— o, t)dV, %)
12

where w(x, t N >k) is the value of the damageability parameter at the time t =t, ,, the given time of exploitation.

The functional (7) evidently takes on its absolutely minimal value just in the case when the damageability
parameter reaches its critical value w(xy, txx) =1 simultaneously at all points of the body. This condition
corresponds to an equally strong structure element during creep [2]. It was noted above that realization of
equally strong structures does not always turn out to be possible and frequently results in practically unrealiza-
ble results. In this connection, we introduce the concept of an optimal structure relative to longevity.

The body (structure element) is called optimal relative to longevity if as much damage as possible is
stored in the material up to a previously assigned time t, ,; in other words, the body is optimal if its material
during the exploitation time ty x depletes its resources maximally. Therefore, the problem of designing an
optimal structure reduces substantially to seeking the minimal value of the functional (7). The stress tensor
and strain rate components should here satisfy the relationships (1)-(6).

To take account of the constraints imposed on the structure by the exploitation conditions, the fabrication
technology, the allowable dimensions, etc., the system (1)-(7) should be supplemented by the relationships

Gl(xh" Gijy Ui,y (D) >01 I = 11 2) 31 LECER Y (8)
where G are given functions determined by the formulation of the problem.

Therefore, the problem of designing a structure with optimal longevity reduces to investigating the target
functional (7) for a conditional extremum with the constraints (1)-(6), (8).

Later we shall consider the following problem: For given external loads and temperature mode deter-
mine the geometric dimensions of a structure such that it would be optimal in longevity.

The solution of the nonstationary variational problem (1}-(8) is fraught with significant mathematical dif-
ficulties and is possible only by relying on numerical methods and special transformations [3, 4]. This is ex-
plained by the fact that the stress—strain state of the structural element depends on the coordinates of the body
points and the time, and their determination within the framework of a variational problem is a very complex
problem.

In this connection, we reduce the initial variational problem to a nonlinear mathematical proéramming
problem [4, 5]. Using the terminology of the theory of optimal control, we let U denote the vector of the struc-
ture parameters to be variated or controlling.
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In particular, the controlling parameter is the geometric dimensions of the structure. A state vector of
the structure Y corresponds to each value of U. The correspondence between U and Y at any time is set up
from the solution of the system (1)-(6).

Superposing a partition mesh of straight lines z}” =z’ + (n — 1)Az, e.g., on the volume V, we seek val-

ues of U, at the partition mesh nodes. Replacing the functional (7) by an approximate finite sum and writing
the constramts (8) at the partition mesh nodes, by taking account of the notation used we obtain a nonlinear
mathematical programming problem instead of the initial variational problem: Minimize the target function

L=31—0UnY)Az" (9)

while satisfying the constraints
GuU., Y =0, 1=1,2,.. (10)

To solve the optimization problem (9), (1L0) we use the method of local variations. It is applicable to func-
tionals dependent on several variables, and as is especially important, to complex functionals {4]. The crux of
this method is to seek initial allowable values of U§1) and alternate changes in these values by the magnitude of
the variational step Ah. Only those values yi? — U§~0 4. Ak are taken in each variational step that would re-
sult in diminution of the target function (9) and not disturb the constraints (10). Execution of the series of such
iterations is continued until the difference between two consecutive values of the target function turns out to be
sufficiently small (JL® — L%V e).

Since the method of local variations generally results in a local extremum, then the result of solving the
problem depends a great deal on the number of partition points, the initial allowable values, and the magnitude
of the variational step. Consequently, to design structures with optimal longevity it is expedient to use a vari-
able variational step, determined such that those values of U, having greatest influence on the target function
(9) would be subject to change. We will determine the magnifude of the variational step as the controlling pa-
rameter diminishes and increases in the i-th iteration at the n-th partition point by the relationships

—i_ n A ; —i 2
Ah;ﬁ>==ho[_8%zflfél;é:l] ,Ah;a>==h0[:flji£ﬂ££jzﬁl} , a

S 7, 1) T (17 ue)

where h, is the greatest value of the variational step, wli-1 s the value of the damageability parameter at the
point being varied in the (i — 1)-th iteration, (rlmix)v “’1(111 U are the least and greatest values of the damageability
parameter among all the points being varied in the (i — 1)-th iteration, A is an exponent. Solution of the non-
linear programming problem (1)-(6), (9), (10) is fraught with definite mathematical difficulties and requires
colossalexpenditures of machine time. This is due to the fact that sefting up a connection between the controll-
ing parameters Up during execution of each iteration and the state parameters Y, defined by Egs. (1)-(6) by the
traditional method of time steps requires considerable time expenditures in the electronic computer [1, 6]. If
it is taken into account that the number of such iterations is large, then the solution of the formulated problem
becomes unrealizable, even using modern electronic computers.

Because of the circumstance noted the analysis and design of structures with optimal longevity are ex~
pediently performed on the basis of an approximate method elucidated in {7, 8]. According to this method,
which is based on utilizing a mixed variational principle, the problem of determining the stress—strain state
of a structure reduces to solving an analogous problem under the assumption of steady creep of the material.
The desired solution is obtained here for any time by multiplying the solution of the steady creep problem by a
function of the coordinates and the time, for whose determination a system of integrodifferential equations is
obtained [7, 8] and whose solution can be obtained with minimal time expenditures on the computer. Utilization
of the proposed approximate method permits reduction of the original nonstationary optimization problem to a
stationary problem, to set up a finite connection at the time t, , between the controlling parameters Uy and the
state parameters Y, and thereby substantially cut down the volume of computational operations on the elec-
tronic computer.

As an iliustration, let us consider the problem of determining the cross-sectional profile of a beam with
optimal longevity, of height h and bending moment M for given constraints on the allowable dimensions of the
beam width and on the level of the stress state. The time of exploitation t« 4 is considered given.

Taking account of the relationships (7) and (8), the problem formulated is to minimize the functional
k72

L= {oil—o@, t)ldy (12)
[1]
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while satisfying the constraints

by < bly) < by} (13)
O (¥, tas) <O (14)

Here y is the running coordinate along the beam height, b(y) is the width of the beam section, b;, b, are the
minimal and maximal allowable dimensions of the beam width, and o the material yield point.

The fundamental relationships of the creep problem (1)-(6) should be satisfied {7]:

hi2

2 | boydy = ur; (15)
0
o/E +P = u.y; (16)
p = Byolum; an
. 11 1/(m+1)
n= [1 —(m+1) Bzyoﬁldr] Y (18)
J :

where for &, &, in (1) and (2) there is taken a power-law dependence on the stress ®; = Bio"+l, @, = B,g8+1;
w is the rate of beam curvature, and E is the elastic modulus. The function u is related to the damageability
parameter w by the relationship

o=1 — 1 (19)
obtained by integrating the kinetic damageability equations (2).

We will construct an analysis of the optimal profile on the basis of the mentioned approximate method,
which permits reduction of the initial nonstationary optimization problem to a stationary problem, and the method
of local variations with a variable variation step.

It is shown in {7] on the bvasis of a mixed variational principle that the solution of the problem (15)-(19) at
any instant has the form

oly, B = olp(y, HI™n/X (). (20)

Here ¢! is the solution of an analogous problem under the assumption of steady creep of the material

hi2

The functions X(t) and u(y, t) are determined here by the expressions

X (8) = (1 — t/13)7; (22)

/ © t\¥ '
"= 1—|—72—[(1—72‘-) —1] ¥ (23)

where t&=[(m - 1) B,c®"|™L;

h/2
= [(m +1)B, 5' bc"”J’ngy/S b0,0n+1dy] .
1]

p=mlln+mn—g—nHh v = n+men —g— DY
/am + 1)1; vy = pv. '

Starting from the middle surface and dividing the beam section according to height, into I equal parts and
replacing the integrals in (12), (22), (23) by approximate finite sums, then taking account of (19), (20)-(23), we

obtain
141

L= gl b (i) 1 (U1, ) Ay (24)
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bily:) < bly:) << balyi); (25)
0% (3:) K™ Uiy Lase)/ X (L4s) <O (26)

Ay = hI2L, y; = (i — 1)Ay).  Values of %), Wi txs) X(tzs) at the partition mesh nodes are determined by
the relationships (20)-(23).

Being given a certain initial value of the beam profile b°(yi) that satisfies the constraints (25) and (26), we
determine L and p((y;, ty,) from (23) and (24).

By alternately changing the value of b(0) (vi) by the magnitude of the variational step An(D (yi) defined by
(11), and selecting just those values of b'! (yi) that result in diminution of the target function (24) and satisfy
the constraints (25) and (26), we obtain b{? ¥i)» L), , (¥;» txx). The computation procedure is repeated until
the target function (24) reaches its least value; the quantities b(k)(yi) obtained here will determine the profile
of the flexible beam with optimal longevity.

The numerical computation of the optimal profile was performed for a beam of given height h =0.02 m
with fixed shelf thickness of 0.06 h and subjected to a M = 80 Nm bending moment and sustaining given loads
for a time of t4s =323 h. The constraints on the beam width and the stress state level governed by (25) and
(26), and the material characteristics had the following values [7}: by =0.002 m, by =0.02 m, oq =260 MPa,
E =5.6+10'MPa, n =g =5, m =10, B, =1.4043 - 1071 (MPa)™8 . h~1, B, =0.9362 -10-%5 (MPa)-(g*1) . h-1.
The exponent for determining the variational step is A =7.

Figure 1 shows the profile of the flexible beam with optimal longevity. It is interesting to note that the
geometric dimensions of the beam's rectangular transverse profile that have the same time fo fracture under
the same loads equal b =0.01 m, h =0.02 m. Comparison of these profiles shows thay the weight of the op-
timal beam is diminished 34 % as compared with a beam of rectangular cross section,

Problems of the design of profiles, optimal in longevity, for a rotating disc and flexible and extensible
annular plates were considered in an analogous manner, ‘

Figure 2 shows the optimal profile of a disc of radius r, = 0.3 m with a hole of radius r; =0.09 m sub-
jected to the action of a p =40 MPa bucket load, and rotating at a constant angular velocity of ny, =5100 rpm.
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The exploitation time is ty, =550 h. The material characteristics and the constraints on the allowable dimen-
sions of the disc thickness are the following: E =6 - 104 MPa, n =5.62, g =5, m =9, B; =0.3224 - 1071262
(MPa)™™ - h~1, B, =0.3375 - 10713 (MPa)~(&+1). h-1, 0. = 260 MPa, hy(r)) =hy(r,)) =0.03 m, h,(r) =0.015 m,
hy(r) =0.08 m, A =4. Itis interesting to note that the time of exploitation of a constant-thickness disc sub-
jected to the action of the very same loads is t,, =316 h. Thus it follows that for an identical structure weight
the exploitation time of an optimal disc increases 1.74 times as compared with a constant thickness disc.

Figure 3 shows the profile of an optimal plate of radius r, =0.12 m with an inner hole of r; =0.07 m ra-
dius subjected to a bending moment of intensity 8.5 Nm distributed uniformly over the outer contour and sus-
taining given loads during a time t,, =276 h. Heren =5, g =5, m =10, E =5.6 - 10* MPa, B; = 0.379 - 10™#
(MPa)™0 . h-1, B, =0.252 - 10~ (MP2)~(8*) . h™!, ¢ =260 MPa, h; =0.01 m, hy =0.1 m, and A =4.

Comparison of the displayed optimal plate with a constant thickness plate subjected to the action of the
very same loads shows that the saving in weight in the optimal design is 15.5% for an identical fime to fracture.

Figure 4 shows the profile of an annular plate of optimal longevity, subjected to the action of radial forces
g =—0.145 MPa - m (uniformly distributed over the inner contour) and sustaining given loads for a time of
tye =329 h for ry =0.12 m, r; =0.06 m, and a material characteristic in conformity with the preceding ex-
ample. The constraints on the allowable dimensions of the plate thickness were given by the values h; =0.01 m
and hy =0.08 m,

Comparison of the optimal plate represented with a constant thickness plate having the same time to frac-
ture under the same loads shows that the savings in weight is 19.7% in the optimal design.

It follows from the computations presented that the optimal designs correspond completely to real struc-
tures and possess substantial advantages here as compared with analogous very simple structures which are
expressed either by an increase in the exploitation fime or by a diminufion in the sfructure weight.
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